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Abstract. This paper improves the trust-region algorithm with adaptive sparse grids introduced
in [?] for the solution of optimization problems governed by partial differential equations (PDEs)
with uncertain coefficients. The previous algorithm used adaptive sparse grid discretizations to
generate models that are applied in a trust-region framework to generate a trial step. The decision
whether to accept this trial step as the new iterate, however, required relatively high fidelity adaptive
discretizations of the objective function. In this paper, we extend the algorithm and convergence
theory to allow the use of low-fidelity adaptive sparse-grid models in objective function evaluations.
This is accomplished by extending conditions on inexact function evaluations used in previous trust-
region frameworks. Our algorithm adaptively builds two separate sparse grids: one to generate
optimization models for the step computation, and one to approximate the objective function. These
adapted sparse grids typically contain significantly fewer points than the high-fidelity grids, which
leads to a dramatic reduction in the computational cost. This is demonstrated numerically using
two examples. Moreover, the numerical results indicate that the new algorithm rapidly identifies the
stochastic variables that are relevant to obtaining an accurate optimal solution. When the number
of such variables is independent of the dimension of the stochastic space, the algorithm exhibits near
dimension-independent behavior.
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1. Introduction. The solution of large-scale optimization problems in science
and engineering must accommodate model uncertainties, such as unknown material
properties and boundary conditions. The coupling of traditional optimization meth-
ods with uncertainty quantification faces significant computational challenges due to
the potentially large number of stochastic variables. To address this issue, we have de-
veloped an algorithm that shows promising results for optimization problems governed
by partial differential equations (PDEs) with random coefficients [?]. This algorithm
uses a trust-region framework to manage models that are based on sparse grids. In [?]
we use adaptive sparse grids to compute the optimization step and a fixed high-fidelity
sparse grid to determine whether to accept the step. As discussed in [?], the dominant
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and potentially prohibitive computational cost of the algorithm is the evaluation of
the objective function using the high-fidelity sparse grid. In this paper we improve
the algorithm by also allowing sparse-grid adaptivity in the approximation of the ob-
jective function. We prove first-order convergence of the algorithm and demonstrate
that the computational cost is reduced dramatically due to our improvement.

The main algorithmic improvements are an extension of the conditions for inex-
act function evaluations in trust-region methods [?, ?, ?] and the integration with the
adaptive sparse-grid discretizations [?] to enforce these conditions in our application
context. Our extension of the conditions on inexact function evaluations is applicable
to a broad class of problems. The practical difficulty with the conditions on inexact
function evaluations presented in [?, ?], [?, Sec. 10.6] is that the error in function
values must be bounded by a specific value related to the trust-region algorithm.
Such conditions are impossible to enforce through error estimates that involve un-
known constants. Our modification of these conditions is motivated by [?, ?], where a
trust-region framework and sequential quadratic programming methods are applied to
determine adaptive finite-element discretizations for PDE-constrained optimization.
For the convergence result in [?] it is assumed that if infinitely many objective func-
tion approximations are generated, the error estimator converges to zero. This is not
guaranteed in our application. Therefore, we introduce a forcing sequence. Moreover,
our conditions are more directly tied to those in [?, ?], [?, Sec. 10.6], which in our
setting are satisfied asymptotically.

As in [?], the inexact gradient considerations are adapted from [?]. We consider
the classic trust-region framework [?] and the retrospective trust-region framework of
[?]. The classic uses the current model to accept a step and to update the trust-region
radius. The retrospective also uses the current model to accept a step, but employs a
new model to update the trust-region radius. This may lead to larger radii and faster
convergence in practice.

Our new, fully adaptive strategy builds two separate sparse grids: one to model
the derivative information that is used to define trust-region subproblems and one
to approximate the objective function. In practice, the adaptively built sparse grids
often contain significantly fewer points than high-fidelity grids.

This paper is organized as follows. In Sections 2 and 3 we summarize our problem
formulation, the sparse-grid collocation discretization, and the notation needed to
analyze our algorithmic improvements. The content of these sections is discussed in
greater detail in [?]. Section 4 presents the new fully adaptive trust-region algorithm
for PDE-constrained optimization under uncertainty using both the classic and the
retrospective version of the trust-region method. Convergence to a point satisfying
the first-order optimality conditions is proved in Appendix A. Numerical results
presented in Section 5 show a vast reduction in the number of PDE solves required
to compute an optimal solution, when compared with [?].

2. Problem Formulation. Let (Ω,F ,P ) denote a complete probability space,
where Ω is the set of outcomes, F ⊆ 2Ω is a σ-algebra of events, and P : F →
[0, 1] is a probability measure. Furthermore let V and Z be real Hilbert spaces of
deterministic functions defined on the physical domain D ⊂ Rd, d = 1, 2, 3, and let
Â : Ω→ L(V,V∗), B̂ : Ω→ L(Z,V∗), b̂ : Ω→ V∗, and N̂ : V ×Ω→ V∗. We consider
nonlinear PDEs of the form

Â(ω)u(ω) + N̂(u(ω),ω) + B̂(ω)z + b̂(ω) = 0 a.e. in Ω.
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To facilitate computation, we employ the finite-dimensional noise assumption. That
is, we assume there exists an M -dimensional random vector Y = (Y1, . . . ,YM ) : Ω→ Γ

with Yk : Ω → Γk ⊆ R and Γ = Γ1 × · · · × ΓM such that Â(ω) ≡ A(Y (ω)), B̂(ω) ≡
B(Y (ω)), b̂(ω) ≡ b(Y (ω)), and N̂(·,ω) ≡ N(·,Y (ω)) for some A : Γ → L(V,V∗),
B : Γ → L(Z,V∗), b : Γ → V∗, and N : V × Γ → V∗. Moreover, Y is endowed with
the joint Lebesgue density ρ = ρ1 ⊗ · · · ⊗ ρM with ρk : Γk → [0, +∞) ∪ {+∞}. This
assumption permits the change of variables

A(y)u(y) + N(u(y), y) + B(y)z + b(y) = 0, y ∈ Γ. (2.1)

Throughout, u ∈ L2
ρ(Γ;V) is the random-field state variable, and z ∈ Z is the deter-

ministic control variable.
We consider optimization problems governed by the PDE (2.1). Let W denote

a real Hilbert space, C ∈ L(V,W), w̄ ∈ W, and α > 0. Consider the optimization
problem

min
z∈Z

J(z)
def
=

1

2
E
[
‖Cu(·; z)− w̄‖2W

]
+
α

2
‖z‖2Z , (2.2)

where E[X] =
∫

Γ
ρ(y)X(y) dy denotes the expected value operator and u(y; z) =

u(y) ∈ V solves (2.1) for almost all y ∈ Γ. Under Assumptions 2.2, 2.3, and 2.5 of [?],
the gradient of the objective function J(z) in (2.2) is

∇J(z) = αz +

∫
Γ

ρ(y)B(y)∗p(y) dy = αz + E[B∗p] (2.3)

where p(y; z) = p(y) ∈ V solves the adjoint equation

A(y)∗p(y) + Nv(u(y), y)∗p(y) = −C∗(Cu(y; z)− w̄), y ∈ Γ (2.4)

and Nv denotes the Fréchet derivative of N with respect to the V (state) component.

3. Stochastic Collocation. As in [?], we (semi-)discretize the optimal control
problem (2.2) by replacing the expected value E with a sparse grid quadrature ap-
proximation. We briefly review this approach to introduce the notation and basic
concepts needed for the remainder of the paper.

3.1. Stochastic Collocation for Optimization. Given an appropriate quadra-
ture operator

EQ[X] =

Q∑
k=1

ωkX(yk) ≈ E[X]

where {(ωk, yk)}Qk=1 ⊂ R×Γ denote the quadrature weights and points, we discretize
the objective function in (2.2) as

JQ(z)
def
=

1

2

Q∑
k=1

ωk‖Cuk(z)− w̄‖2W +
α

2
‖z‖2Z , (3.1)

where uk(z) = uk ∈ V is the solution of

A(yk)uk + N(uk, yk) + B(yk)z + b(yk) = 0, k = 1, . . . ,Q. (3.2)
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This approach results in the semi-discretized optimization problem

min
z∈Z

JQ(z). (3.3)

Again, Assumptions 2.2, 2.3, and 2.5 of [?] imply that the objective function in (3.3)
is Fréchet differentiable with gradient

∇JQ(z) = αz +

Q∑
k=1

ωkB
∗
kpk, (3.4)

where pk ∈ V solves the adjoint equations

A(yk)∗pk + Nv(uk, yk)∗pk = −C∗(Cuk − w̄), k = 1, . . . ,Q. (3.5)

As pointed out in [?, ?], sparse grids often result in negative quadrature weights ωk.
In such cases, it is not clear that the semi-discretized problem (3.3) is well-posed.

3.2. Sparse Grids. The material in this section is based on previous work by
many authors, including [?, ?, ?, ?, ?].

Sparse-grid quadrature operators are constructed from one-dimensional (1D) quadra-
ture operators. For k = 1, . . . ,M , let {Eik}i≥1 denote a sequence of 1D quadrature
operators built on the quadrature points N i

k ⊂ Γk such that Eik is exact for polyno-
mials of dik − 1, where {dik}∞i=1 ⊂ N is an increasing sequence, and

Eik[X]→ Ek[X] =

∫
Γk

ρk(y)X(y)dy as i→∞

for sufficiently regular X ∈ C0
ρk

(Γk). Define the 1D difference quadrature operators

∆1
k

def
= E1

k and ∆i
k

def
= Eik − Ei−1

k , for i ≥ 2.

To define the M -D quadrature rule on Γ = Γ1×· · ·×ΓM let i = (i1, . . . , iM ) be a
multi-index and let I ⊂ NM+ be a finite multi-index set, where N+ = {1, 2, . . .}. The
general sparse-grid quadrature operator is defined as

EI
def
=
∑
i∈I

(∆i1
1 ⊗ · · · ⊗∆iM

M ). (3.6)

The quadrature rule in (3.6) is expressed via 1D difference quadrature operators
∆i
k. If the index set I ⊂ NM+ is admissible, in the sense that for all i = (i1, . . . , iM ) ∈ I

it holds that

j = (j1, . . . , jM ) ∈ NM+ and jk ≤ ik ∀ k = 1, . . . ,M =⇒ j ∈ I,

then we can use the combination technique [?] to write (3.6) in terms of the original 1D
quadrature operators Eik. Furthermore, we can determine the set of points required
to evaluate EI (i.e., the sparse grid associated with I) and the sparse grid collocation
weights can be computed from the weights of the original 1D quadrature formulas.
See, e.g., [?] or [?] for details.

To determine the admissible index set in (3.6) we use the dimension-adaptive
approach presented in [?]. The application of this approach in our context is presented
in Sections 4.2 and 4.3.
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Notation. To emphasize the dependence of the objective function approximation
on the sparse grid, we will use the notation JI(z) and EI instead of JQ(z) and EQ.

4. Trust Regions. To facilitate numerical computation, we wish to approximate
J and its gradient using adaptive sparse grids. Given a current iterate zk, trust-region
methods compute a new iterate by approximately minimizing a local model mk(s) of
the true objective function J(zk + s) over the trust region {s ∈ Z : ‖s‖ ≤ ∆k}. As
in [?] we use sparse-grid models mk(s) = JIk(zk + s). To guarantee convergence of
the trust-region method, the gradient of the model, ∇mk(0) = ∇JIk(zk), must be a
sufficiently good approximation of the true gradient, ∇J(zk). We specify the gradient
approximation quality in (4.3) below and discuss how to enforce this condition in
Section 4.2.

Once an approximate minimizer sk of the model mk is computed, trust-region
algorithms check whether zk + sk is accepted as the new iterate, and the trust-region
radius is updated. Step acceptance and the trust-region update depend on the ratio
of actual reduction aredk = (J(zk) − J(zk + sk)) and predicted reduction predk =
(mk(0) − mk(sk)). The actual reduction involves the exact objective function J in
(2.2), which we cannot compute. In [?] we used a fixed high-fidelity sparse grid with
index set JF and replaced aredk by JJF

(zk)− JJF
(zk + sk). In this paper we replace

JF with an adaptive index set Jk, and use JJk
(zk)− JJk

(zk + sk) instead of aredk.
Prior references [?, ?, ?] and [?, Secs. 8.4,10.6] postulate conditions on the gradient

and objective function accuracy that are impossible to verify in many applications.
In the next section, we extend the work of [?, ?] to relax these conditions for the
classic and retrospective trust-region algorithms. In Sections 4.2 and 4.3 we discuss
the implementation of our inexact gradient and objective function conditions for (2.2)
using adaptive sparse grids. The proposed algorithms apply to not only (2.2), but
also infinite-dimensional optimization problems where objective functions are approx-
imated by adaptive finite elements [?, ?], or reduced-order models [?, ?].

4.1. The Algorithm. Let J : Z → R be a smooth functional on a Hilbert space.
Precise assumptions on the smoothness of J are stated below. Given an iterate zk,
a trust-region algorithm builds a smooth model mk : Z → R of s 7→ J(zk + s) on
the trust-region {s ∈ Z : ‖s‖ ≤ ∆k}, where ∆k > 0 is the trust-region radius. The
algorithm then computes a trial step sk by approximately solving

min
s∈Z

mk(s) subject to ‖s‖Z ≤ ∆k. (4.1)

The trial step sk must satisfy the fraction of Cauchy decrease condition

mk(0)−mk(sk) ≥ κ0‖∇mk(0)‖Z min
{

∆k,
‖∇mk(0)‖Z

βk

}
, (4.2)

where κ0 > 0 and βk = 1 + sups∈Bk
‖∇2mk(s)‖L(Z,Z∗). For all k the model mk

must approximate the true objective function s 7→ J(zk + s) so that the true and
approximate gradients at s = 0 satisfy

‖∇mk(0)−∇J(zk)‖Z ≤ ξmin{‖∇mk(0)‖Z , ∆k}. (4.3)

Here, ξ > 0 is independent of k. This condition is due to [?].
The step sk is accepted, i.e., successful, if it produces sufficient decrease in the

objective function J . That is, if the ratio between actual and predicted reduction,

aredk = J(zk)− J(zk + sk) and (4.4)

predk = mk(0)−mk(sk) , (4.5)
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respectively, is larger than some η1 ∈ (0, 1), aredk/predk ≥ η1. Often the evaluation of
J is impossible, but an approximation Jk can be computed. The subscript k indicates
that the objective function approximation may change from iteration to iteration.
With this approximation, we can compute the reduction

credk = Jk(zk)− Jk(zk + sk). (4.6)

To ensure convergence of the trust-region algorithm we must ensure that |aredk −
credk| is sufficient small. The authors of [?, Sec. 10.6] require that

max {|J(zk)− Jk(zk)|, |J(zk + sk)− Jk(zk + sk)|} ≤ η̃ predk ∀k , (4.7)

for some η̃ ≤ 1
2η1. This condition is similar to the condition used in [?]. The difficulty

is that the constant η̃ is tied to the parameter η1 in the trust-region algorithm used
to decide the acceptance of the step. However, if error estimators used to bound
the error between the exact and computed objective functions depend on unknown
constants it is impossible to guarantee (4.7). We build on [?] to remove this difficulty.

We assume that there exists an estimator θk = θ(zk, sk) for the error in the
objective function so that for a constant K > 0,

|aredk − credk| ≤ Kθk ∀k . (4.8a)

Note that we need the existence of a constant K with (4.8a), but we do not need to
know its value. We can reduce θk = θ(zk, sk) below the given tolerance through, e.g.,
mesh or quadrature refinement. For fixed ω ∈ (0, 1), we control the error estimator
θk via the following bound,

θωk ≤ ηmin {predk, rk} , (4.8b)

where

η < min{η1, 1− η2} and {rk}∞k=1 ⊂ [0,∞) satisfies lim
k→∞

rk = 0. (4.8c)

Here, η2 ∈ (η1, 1) is the threshold used to determine whether the trust-region radius
should be increased. That is, if

%k
def
=

credk
predk

≥ η2,

the trust-region radius is increased. Condition (4.8b) is similar to the condition pre-
sented in [?, Sec. 10.6] with the addition of the forcing sequence rk. Notice that, since
rk → 0 as k →∞, we have that θk → 0 as k →∞. Therefore, for k sufficiently large,
θk ≤ K−1/(1−ω) and

|aredk − credk| ≤ Kθk = Kθωk θ
1−ω
k ≤ θωk ≤ ηmin {predk, rk} . (4.9)

The addition of the forcing sequence can also be used in the conditions from [?] or
[?, Sec. 10.6]. In [?, p. 16], where models Jk and mk are obtained via adaptive
mesh refinement, it is assumed that if the mesh is refined infinitely often, i.e., if for
a subsequence {ki} a new model Jki is computed via mesh refinement, then θki → 0
as ki → ∞. With this assumption, the explicit forcing parameter rk in (4.8b) is
not needed. Note also that predk → 0 if sk → 0. Hence as the iteration converges,
predk → 0, and in this case one can replace min {predk, rk} with predk.

The classic trust-region algorithm is listed given as follows.
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Algorithm 4.1.
1. Initialization: Given zk, ∆k, 0 < γ1 ≤ γ2 < 1, ∆max > 0, and 0 <

η1 < η2 < 1.
2. Model Selection: Choose a model mk which satisfies (4.3).
3. Step Computation: Compute an approximate solution sk of (4.1) that

satisfies the fraction of Cauchy decrease condition (4.2).
4. Objective Function Update: Determine an objective function approx-

imation Jk such that the corresponding error estimate θk satisfies (4.8).
5. Step Acceptance: Compute %k = credk/predk.

if %k ≥ η1 then zk+1 = zk + sk else zk+1 = zk end if
6. Trust-Region Update:

if zk+1 = zk then ∆k+1 ∈ (0, γ1‖sk‖Z ]
else Update ∆k+1 by

if %k ≤ η1 then ∆k+1 ∈ (0, γ2‖sk‖Z ] end if
if ρk ∈ (η1, η2) then ∆k+1 ∈ [γ2‖sk‖Z , ∆k] end if
if %k ≥ η2 then ∆k+1 ∈ [∆k, ∆max] end if

Remark 4.2. For completeness we study the retrospective trust-region method
of Bastin et al. [?], which we also analyzed in [?]. The retrospective trust-region
determines whether to accept a step based on the current local model mk, but when
the step is accepted the retrospective algorithm updates the trust-region radius based
on the new model mk+1(s) ≈ J(zk+1 + s). Therefore the retrospective update may
increase the trust-region radius faster if the new model mk+1 is better than the old
one. For the retrospective trust-region algorithm, the inexact gradient condition (4.3)
is replaced in [?] by

‖∇mk(0)−∇J(zk)‖Z ≤ ξmin{‖∇mk(0)‖Z , ∆k−1}. (4.10)

Moreover, Step 2 (Model Selection) in Algorithm 4.1 is performed following Step 5
(Step Acceptance) to produce the new model mk+1(s) ≈ J(zk+1 + s) and Step 6 in
Algorithm 4.1 (Trust-Region Update) is modified as follows:
if zk+1 = zk then ∆k+1 ∈ (0, γ1‖sk‖Z ]
else Compute %̃k+1 = credk/(mk+1(−sk)−mk+1(0)) and update ∆k+1 by

if %̃k+1 ≤ η1 then ∆k+1 ∈ (0, γ2‖sk‖Z ] end if
if ρ̃k+1 ∈ (η1, η2) then ∆k+1 ∈ [γ2‖sk‖Z , ∆k] end if
if %̃k+1 ≥ η2 then ∆k+1 ∈ [∆k, ∆max] end if.

To prove convergence of the classic Trust-Region Algorithm 4.1 we need the fol-
lowing assumptions on the objective function, its approximation, and the model.

Assumptions 4.3.
1. J : Z → R is twice continuously Fréchet differentiable and bounded below.
2. Jk : Z → R is bounded below for all k.
3. mk : Z → R is twice continuously Fréchet differentiable for all k.
4. There exist κ1, κ2 > 0 such that for all z ∈ Z and for all k

‖∇2J(z)‖L(Z,Z∗) ≤ κ1 and ‖∇2mk(z)‖L(Z,Z∗) ≤ κ2.

Under Assumptions 4.3, one can prove the first-order convergence of Algorithm 4.1.
This is a slight generalization of the convergence results in [?, ?, ?]. We prove this
result in Appendix A.
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Theorem 4.4. If Assumptions 4.3 hold, then the iterates {zk} generated by
the classic trust-region algorithm, Algorithm 4.1, or by the retrospective trust-region
algorithm, Algorithm 4.1 with Remark 4.2, satisfy

lim inf
k→∞

‖∇mk(0)‖Z = lim inf
k→∞

‖∇J(zk)‖Z = 0.

4.2. The Gradient Condition and Adaptive Sparse Grids. To satisfy (4.3)
we define the local model using the sparse-grid approximation

mk(s)
def
= JIk(zk + s) =

1

2
EIk

[
‖Cu(zk + s)− w̄‖2W

]
+
α

2
‖zk + s‖2Z ,

where zk ∈ Z and Ik ⊂ NM+ is an admissible index set. The specific forms of ∇J(z)
and ∇JIk(z) give rise to the gradient error

‖∇J(z)−∇JIk(z)‖Z =
∥∥∥∑

i6∈Ik

(∆i1
1 ⊗ · · · ⊗∆iM

M )[B∗p]
∥∥∥
Z

.

We determine the admissible index set Ikusing the dimension-adaptive approach pre-
sented in [?]. This approach builds the admissible index set Ik = Ak∪Ok decomposed
into a set of ‘old’ indices Ok and a set of active indices Ak and uses integral contri-
butions for indices in Ak to estimate the error. Specifically, we use the contributions

from the active set Ak as a heuristic estimate for
∥∥∥∑i/∈Ik(∆i1

1 ⊗ · · · ⊗∆iM
M )[B∗p]

∥∥∥
Z

.

That is, we compute an index set Ik = Ok ∪Ak using Algorithm 4.5 below such that∥∥∥ ∑
i∈Ak

(∆i1
1 ⊗ · · · ⊗∆iM

M )[B∗p]
∥∥∥
Z

≤ ξmin
{∥∥∥αz +

∑
i∈Ik

(∆i1
1 ⊗ · · · ⊗∆iM

M )[B∗p]
∥∥∥
Z

, ∆k

}
. (4.11)

Although there is no proof that we can bound the left-hand side with a constant times
the right-hand side, our numerical examples suggest that this is typically satisfied.

The model selection and gradient computation algorithm is listed in Algorithm 4.5.

Algorithm 4.5. Set i = (1, . . . , 1), A = {i}, O = ∅, ri = (∆i1
1 ⊗ · · · ⊗

∆iM
M )[B∗p] and β = βi = ‖ri‖Z , g = αz + ri, and TOL = ξmin{‖g‖Z , ∆k}
while β > TOL do

Select i ∈ A corresponding to the largest ηi
Set A ← A \ {i} and O ← O ∪ {i}
Update the error indicator β ← β − βi
for k=1,. . . ,M do

Set j = i + ek
if O ∪ {j} is admissible then

Set A ← A∪ {j}
Set rj = (∆j1

1 ⊗ · · · ⊗∆jM
M )[B∗p]

Set βj = ‖rj‖Z
Update the gradient approximation g ← g + rj
Update the error indicator β ← β + βi
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Update the stopping tolerance TOL = ξmin{‖g‖Z , ∆k}
end if

end for
end while

Set Ik = A ∪O, mk(s) = JIk(zk + s), and ∇mk(0) = g.

If the retrospective trust-region method is used, the tolerance in Algorithm 4.5 is
set to TOL = ξmin{‖g‖Z , ∆k−1}; see (4.10).

4.3. Inexact Objective Functions and Adaptive Sparse Grids. To com-
pute credk, we define the varying-fidelity objective function approximations

Jk(z)
def
= JJk

(z) =
1

2
EJk

[
‖Cu(z)− w̄‖2W

]
+
α

2
‖z‖2Z ,

where zk ∈ Z and Jk ⊂ NM+ is an admissible index set.
The specific form of the objective function error for a given index set Jk is

J(zk)− Jk(zk) =
1

2

∑
i6∈Jk

(∆i1
1 ⊗ · · · ⊗∆iM

M )[‖Cu(zk)− w̄‖2W ]

J(zk + sk)− Jk(zk + sk) =
1

2

∑
i6∈Jk

(∆i1
1 ⊗ · · · ⊗∆iM

M )[‖Cu(zk + sk)− w̄‖2W ]

and the inexact objective function evaluation condition, (4.8a), is

1

2

∣∣∣ ∑
i6∈Jk

(∆i1
1 ⊗ · · · ⊗∆iM

M )[‖Cu(zk + sk)− w̄‖2W − ‖Cu(zk)− w̄‖2W ]
∣∣∣ω

≤ ηmin{predk, rk} . (4.12)

Again, we use the dimension-adaptive approach presented in [?] to construct the
admissible index set Jk = Ak ∪ Ok, which is decomposed into a set of ‘old’ indices
Ok and a set of active indices Ak, and we use the contributions from the active set
Ak as a heuristic error estimator θk = θk(zk, sk):

θk
def
=
∣∣∣∑
i∈Ak

(∆i1
1 ⊗ · · · ⊗∆iM

M )
[
‖Cu(zk + sk)− w̄]‖2W − ‖Cu(zk)− w̄‖2W

]∣∣∣
≈
∣∣∣ ∑
i6∈Jk

(∆i1
1 ⊗ · · · ⊗∆iM

M )
[
‖Cu(zk + sk)− w̄]‖2W − ‖Cu(zk)− w̄‖2W

]∣∣∣.
In addition, note that if there exists K > 0 such that (4.8a) holds, then (4.9) is
satisfied for sufficiently large k, and global convergence is ensured. We have not
verified this result for the examples in Section 5.

The objective approximation Jk in Step 4 of Algorithm 4.1 is chosen as follows.

Algorithm 4.6. Set i = (1, . . . , 1), A = {i}, O = ∅,
ϑ = θi = (∆i1

1 ⊗ · · · ⊗∆iM
M )[‖Cu(zk + sk)− w̄‖2W − ‖Cu(zk)− w̄‖2W ], c = θi, and

TOL = (ηmin{predk, rk})1/ω

while |ϑ| > TOL do
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Select i ∈ A corresponding to the largest |ri|
Set A ← A \ {i} and O ← O ∪ {i}
Update the error indicator ϑ← ϑ− θi
for k=1,. . . ,M do

Set j = i + ek
if O ∪ {j} is admissible then

Set A ← A∪ {j}
Set θj = (∆j1

1 ⊗ · · · ⊗∆jM
M )[‖Cu(zk + sk)− w̄‖2W − ‖Cu(zk)− w̄‖2W ]

Update the computed reduction c← c+ θi
Update the error indicator θk ← θk + θi

end if
end for

end while

Set Jk = A ∪O and credk = c.

5. Numerical Results. In this section, we present the results of our fully adap-
tive framework for PDE-constrained optimization under uncertainty applied to two
numerical examples similar to those used in [?]: optimal control of the steady 1D
Burgers’ equation and optimal control of the 2D Helmholtz equation. For their solu-
tion we use the classic trust-region algorithm, Algorithm 4.1, with truncated conjugate
gradients to solve the trust-region subproblem [?]. Algorithmic parameters in (4.3)-
(4.9) are set to ζ = 0.1, ξ = 0.01, ω = 0.75, rk = 0.9k, η1 = 0.05, η2 = 0.75, γ1 = 0.5
and γ2 = 2.5.

Implementation. As in [?], our software is built on Trilinos [?, ?]. For spatial
finite element discretizations and to efficiently manage the adaptive stochastic dis-
cretizations we use the Intrepid [?] package. For additional details, see [?].

Computational Infrastructure. In contrast with [?], where we used the RedSky
computing cluster at Sandia National Laboratories to perform the 2D Helmholtz nu-
merical experiments, the Helmholtz optimal control example in Section 5.2 is solved
on a single workstation with dual six-core Xeon X5680 3.33GHz processors and
24GB of RAM. The significant reduction in the required computing power is due
entirely to the algorithmic advances presented in this paper. These advances pave
the way for an efficient solution of optimization problems governed by 3D and time-
dependent PDE models with random state variables.

5.1. Optimal Control of Steady Burgers’ Equation. Our first example is
the optimal control of the steady viscid Burgers’ equation. The problem formulation
is identical to [?]. In this paper, we change the spatial discretization slightly. We
partition the domain D = (0, 1) into three subdomains D ∪ ∂D = [0, 0.2]∪ [0.2, 0.8]∪
[0.8, 1]. We mesh [0, 0.2] with 80 uniform intervals; [0.2, 0.8] with 16 uniform intervals;
and [0.8, 1] with 160 uniform intervals. Our maximum sparse-grid discretization uses
level-8 isotropic Smolyak sparse grids built on 1D Clenshaw-Curtis knots. We solve
the discretized nonlinear system at each sparse-grid point using Newton’s method
globalized with a backtracking line search.

We compare three optimization algorithms: Newton-CG on a fixed sparse grid, the
trust-region method with gradient adaptivity as proposed in [?], and the fully adaptive
approach developed in this paper. The computational cost of these optimization
algorithms is proportional to the number of PDE solves required. Our implementation
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stores the state and adjoint variables for the current and previous iterations. This
avoids recomputations during the adaptivity and the truncated CG iterations.

Table 5.1 contains the comparison of the methods. As in [?], we note that the
gradient-only adaptive approach (‘Grad. Adapt.’) drastically reduces the number
of adjoint and sensitivity (linear) PDE solves required to obtain a minimizer — we
observe a reduction by a factor of 143.9. However, the principal bottleneck of this
approach is the evaluation of the high-fidelity objective function at each outer trust-
region iteration, resulting in a similar number of state (nonlinear) PDE solves as in
Newton-CG. On the other hand, our fully adaptive approach (‘Full Adapt.’) sig-
nificantly reduces the number of state (nonlinear) PDE solves while requiring the
same number of linear PDE solves as the gradient-only adaptive approach. The fully
adaptive approach reduces the number of nonlinear solves by a factor of 75.0 when
compared with the gradient adaptive approach and Newton-CG. Moreover, we do
not sacrifice accuracy in the computed optimal controls by incorporating the addi-
tional layer of objective function inexactness. The relative error between the optimal
controls computed using Newton-CG and the fully adaptive approach is 2.89×10−6.

Algorithm NonlinPDE CPobj LinearPDE CPgrad Rel. Err.

Newton-CG 45,224 (1.0) 7,537 489,906 (1.0) 7,537 –
Grad. Adapt. 45,531 (1.0) 7,537 3,405 (143.9) 249 2.89×10−6

Full Adapt. 603 (75.0) 23 3,405 (143.9) 249 2.89×10−6

Table 5.1: The total number of nonlinear PDE solves (NonlinPDE), the final number
of collocation points used for the objective function (CPobj), the total number of linear
PDE solves (LinearPDE), the final number of collocation points used for the model
of the subproblem (CPgrad), and relative error between the controls computed using
adaptivity and the control computed using Newton-CG. The numbers in parentheses
in the NonlinPDE and LinearPDE columns are the ratios of the PDE counts required
for Newton-CG and the PDE counts required for the adaptive approaches.

5.2. Optimal Control of Stochastic Helmholtz Equation. The second ex-
ample is motivated by direct field acoustic testing [?], where the goal is to accurately
shape sound pressure fields in a region of interest by using high-powered loudspeakers.

Similar to [?], we consider an example in two spatial dimensions, where the domain
is D = (−5, 5)2. The goal is to match the wave pressure u to a desired wave pressure
w̄ ∈ L2(D;C) in the disk DR ⊂ D, DR := {x ∈ D : ‖x‖2 ≤ 2}. In contrast to
[?], where we used acoustic controls distributed in an annulus, for enhanced model
fidelity we apply square-shaped acoustic controls at 20 discrete locations surrounding
DR, see Figure 5.1. The square-shaped controls are of width 0.3. The centers of the
control squares are distributed equidistantly on the circle of radius 2.65 centered at
the origin, with the first square center at (2.65,0). The sides of the squares closest to
DR are tangent to the circle of radius 2.5 centered at the origin. We denote the spatial
support of the control squares by DC , i.e., the union of blue regions in Figure 5.1,
left pane. To model loudspeaker enclosures, each acoustic control is surrounded on
the three sides facing away from DR by a region of higher wave speed. The desired
complex-valued wave pressure is given by the plane-wave expression

w̄(x) = exp
(
i
(
(k cos θ)x1 + (k sin θ)x2

))
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where the angle of wave propagation is θ = π/4, and k = 10. We call k the wave
number. The real part of the desired wave pressure is shown in Figure 5.1, right pane.

DR

Fig. 5.1: Left pane: A sketch of the computational domain with the region of interest
DR and 20 loudspeakers spaced uniformly along a circle surrounding DR. The red
(lighter) color denotes uncertainty in the refraction index inside DR and uncertainty in
the loudspeaker enclosures (including thickness and sound speed). The blue (darker)
color stands for the loudspeaker control regions, whose union is denoted by DC . Right
pane: The real component of the desired state, w̄.

The optimal control problem is given by

min
z∈L2(D;C)

1

2

∫
Γ

ρ(y)

∫
DR

(u(z; y,x)−w̄(x))(u(z; y,x)− w̄(x))dxdy+
α

2

∫
Dc

z(x)z(x)dx,

(5.1)
where u(z; y, ·) = u(y, ·) ∈ H1(D;C) for all y ∈ Γ ≡ ΓKL×ΓSW×ΓSM solves

−∆u(y,x)−K(y,x)u(y,x) = z(x) ∀ (y,x) ∈ Γ×D (5.2)

with Robin boundary conditions ∂u
∂n (y,x) = iku(y,x), (y,x) ∈ Γ× ∂D.

In (5.2), u is the wave pressure. The random quantity K(y,x) > 0 and the sets
ΓKL, ΓSW and ΓSM will be specified below. The Robin boundary conditions where k
is the given wave number, are a first-order approximation of the Sommerfeld radiation
condition.

We study three sources of uncertainty. First, we assume that the refractive index
of the medium in the region of interestDR is random, and use the stochastic Helmholtz
equation to model the governing physics, as derived, for example, in [?, ?, ?]. Specif-
ically, in DR we set K(y,x) = k2(1 + σε(y,x))2, where the stochastic refractive index
1 + σε(y,x) satisfies σ = 0.1, E[ε(·,x)] = 0. and E[ε(·,x)ε(·, ζ)] = C(‖x − ζ‖). As in
[?] we choose C to be an instance of the Matérn covariance functions,

C(r) = Cν(r) :=
21−ν

Γ(ν)

(2
√
νr

`

)ν
Kν

(2
√
νr

`

)
,

with parameters ν = 11
2 and ` = 2. Here, Γ(ν) is the gamma function, and Kν is the

modified Bessel function of the third kind [?]. We approximate the refractive index
using a truncated Karhunen-Loéve (KL) expansion of ε(y,x),

ε(y,x) ≈
M∑
m=1

εm(x)ym ,
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with coefficients εm : D → R, for m = 1, . . . ,M , and uncorrelated random variables
ym uniformly distributed on the interval [−

√
3,
√

3]. This gives ΓKL ≡ [−
√

3,
√

3]M .
Second, we assume that the thickness of each loudspeaker enclosure is a uniformly
distributed random variable, resulting in 20 random thicknesses. Specifically, the
width of each square that is the union of the blue and red regions in Figure 5.1 is
drawn from [0.3, 0.33], in other words ΓSW ≡ [0.3, 0.33]20. Third, we assume that
the speed of sound in each loudspeaker enclosure is a uniformly distributed random
variable. In particular, we choose the wave numbers in the red enclosure regions from
ΓSM ≡ [0.8kr, 1.2kr]

20, where the nominal value kr is set to 2.2871. The squares of the
wave numbers define the quantity K(y,x) in the red enclosure regions. Outside of the
enclosure regions and the region DR we set K(y,x) = k2, where k = 10. In summary,
we consider 40 random loudspeaker parameters (including enclosure thicknesses and
wave numbers) and M random region-of-interest parameters.

For the spatial discretization we use continuous Q1 finite elements on a uniform
mesh of 200×200 quadrilaterals. The collocation discretizations for the optimization
problem are built on 1D Clenshaw-Curtis interpolation knots. The control penalty pa-
rameter is α = 10−4. We terminate the algorithm when the norm of the model gradi-
ent falls below 10−6. The overall stochastic dimension of the problem, which we denote
by dim, is given by dim = 40 +M , where M is the order of the KL expansion of the
refractive index. Here we consider problems with dim ∈ {42, 44, 46, 48, 50, 60, 70, 80}.

Fig. 5.2: Left pane: The real parts of the computed optimal controls. Center pane:
The real part of the expected value of the optimal state, restricted to the region of
interest. Right pane: The real part of the standard deviation of the optimal state.

Figure 5.2 shows the real parts of the computed optimal controls, the real part
of the expected value of the optimal state restricted to the region of interest, and
the real part of the standard deviation of the optimal state, for the largest stochastic
dimension, dim = 80. The results appear very similar to those obtained in [?].

Table 5.2 gives the computational cost of our algorithm as the stochastic dimen-
sion increases from dim = 42 to dim = 80. First, we emphasize that even for the
largest dimension, dim = 80, the problem can be solved using the modest computa-
tional resources described at the beginning of this section. Second, we recall that the
40-dimensional problem from [?] required 1, 804, 001 collocation points for the eval-
uation of the high-fidelity objective function, while the 80-dimensional problem here
requires only 311 points due to the adaptive objective function evaluations. Third,
a close examination of the stochastic dimensions explored by our algorithm reveals

1This value is motivated by the material properties of wood-based composites. It is derived from
an air-speed to wood-speed ratio of 343/1500 and the wave number in air of k = 10, which was used
previously to define the desired pressure w̄.
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dim PDE Solves CPobj CPgrad Obj. Value

42 11,543 145 145 5.2542
44 32,739 233 481 5.2637
46 60,617 243 1,453 5.2641
48 79,221 247 2,961 5.2641
50 90,157 251 4,569 5.2641
60 100,911 271 7,621 5.2641
70 103,979 291 8,233 5.2641
80 105,607 311 8,253 5.2641

Table 5.2: Computational cost of the fully adaptive trust-region algorithm applied to
the Helmholtz control example. Here dim is the stochastic dimension, PDE Solves
is the total number of forward and adjoint PDE solves, CPobj is the final number
of collocation points used by the adaptive objective function scheme, CPgrad is the
final number of collocation points used by the adaptive subproblem (gradient) model,
and Obj. Value is the computed value of the objective function at termination.

that the 40 random loudspeaker parameters are largely insignificant. The random
material parameters in the region of interest account for most of the adaptive col-
location performed by the algorithm, which is the reason why we report results for
dim > 40. Finally, we note that while the number of PDE solves increases with the
stochastic dimension, the increase between dimensions dim = 60 and dim = 80 is
very small — only about 5%. Here the behavior of our algorithm is nearly indepen-
dent of the stochastic dimension. In particular, the algorithm automatically zooms in
on approximately 10 (out of 80) stochastic dimensions that are relevant to achieving
objective function and gradient consistency conditions, thereby vastly reducing the
effective problem size.

6. Conclusions. We have introduced a new trust-region algorithm with adap-
tive sparse-grid collocation for the numerical solution of optimization problems gov-
erned by PDEs with uncertain coefficients. The algorithm extends the use of consis-
tency conditions, studied in the context of gradient computations in [?], to objective
function evaluations, eliminating the need for expensive high-fidelity sparse-grid dis-
cretizations. Our fully adaptive approach builds two separate sparse grids: one to
model the derivative information that is used to define the trust-region subproblem,
and one to approximate the objective function. These adapted sparse grids typically
contain significantly fewer points than high-fidelity grids.

The algorithm is applied to two numerical examples. The results show a vast
reduction in the number of PDE solves required to compute an accurate solution of
the optimization problem, when compared with the method in [?]. Moreover, the
algorithm rapidly identifies the stochastic variables that are relevant to obtaining an
accurate optimal solution. When the number of such variables is independent of the
dimension of the stochastic space, the algorithm exhibits near dimension-independent
behavior.

REFERENCES

Appendix A. Convergence Proof. We first prove results concerning step
acceptance and trust-region radius update. We then use these results to prove the
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first-order convergence of Algorithm 4.1. Most results presented here follow the stan-
dard proof for the classic trust-region algorithm provided in [?, Th. 4.10], although
care must be taken to handle the retrospective trust-region update and the inexact
objective function evaluations. To simplify the presentation, we recall the definitions
of the actual, predicted and computed reductions, respectively,

aredk = J(zk)−J(zk+sk), predk = mk(0)−mk(sk), credk = Jk(zk)−Jk(zk+sk).

Lemma A.1. If the inexact objective function condition (4.8) hold, then for k
sufficiently large

%∗k
def
=

aredk
predk

∈ [%k − η, %k + η] .

Proof. For k sufficiently large, condition (4.8) implies

%∗k = %k + (%∗k − %k) ≥ %k −
|aredk − credk|

predk
≥ %k − η .

Similarly, for sufficiently large k,

%∗k = %k + (%∗k − %k) ≤ %k +
|aredk − credk|

predk
≤ %k + η .

Lemma A.1 is used to prove the sequence of trust-region radii converges to zero.

Lemma A.2. Let Assumptions 4.3 and inexact objective function condition (4.8)
hold. If there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε for k sufficiently large, then the
sequence of trust-region radii, {∆k}, produced by Algorithm 4.1 satisfies

∞∑
k=1

∆k <∞ .

Proof. First note that this lemma holds if there are only finitely many successful
iterations since for sufficiently large k, ∆k+1 ≤ γ1∆k.

Now, suppose there is an infinite sequence of successful iterations {ki}. For ki
sufficiently large, Assumptions 4.3, Lemma A.1, Step 5 (Step Acceptance) of Algo-
rithm 4.1, and the fraction of Cauchy decrease condition (4.2) imply

aredki ≥ credki − ηpredki ≥ (η1 − η)predki ≥ (η1 − η)κ0εmin

{
ε

1 + κ2
, ∆ki

}
.

Since J is bounded below by assumption, summing the actual decrease in the objective
function J gives

(η1 − η)κ0ε

∞∑
i=1

min

{
ε

1 + κ2
, ∆ki

}
≤
∞∑
i=1

aredki = J(zk0)− lim
i→∞

J(zki) <∞.

Therefore, aredki → 0 as i→∞ and, since η1 − η > 0, we have
∑∞
i=1 ∆ki <∞.
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For every unsuccessful iteration k 6∈ {ki} the trust-region radius satisfies ∆k ≤
γ
k−kj
1 ∆kj where kj ∈ {ki} is the largest index of a successful iteration such that
kj < k. The convergence of geometric series and the above result imply that

∑
k 6∈{ki}

∆k ≤
1

1− γ1

∞∑
i=1

∆ki and

∞∑
k=1

∆k ≤

(
1 +

1

1− γ1

) ∞∑
i=1

∆ki <∞.

This proves the desired result.
Lemma A.2 is used to obtain a contradiction. To arrive at this contradiction, we

first prove that Algorithm 4.1 produces a successful step for sufficiently large k.
Lemma A.3. Let Assumptions 4.3 hold. If there exists ε > 0 such that ‖∇mk(0)‖Z ≥

ε, then in Algorithm 4.1 the condition %k ≥ η2 > η1 is satisfied for k sufficiently large.
Proof. By Taylor’s theorem, there exist t1, t2 ∈ [0, 1] such that

aredk = 〈∇J(zk), sk〉Z +
1

2
〈∇2J(zk + t1sk)sk, sk〉Z

predk = 〈∇mk(0), sk〉Z +
1

2
〈∇2mk(t2sk)sk, sk〉Z .

The above Taylor expansions and Assumptions 4.3 imply

|aredk − predk| ≤ ξ∆2
k +

1

2
(κ1 + κ2)∆2

k.

Furthermore, the fraction of Cauchy decrease condition (4.2), Lemma A.2, Assump-
tions 4.3, and ‖∇mk(0)‖Z ≥ ε imply that for sufficiently large k,

predk ≥ κ0‖∇mk(0)‖Z min
{

∆k,
‖∇mk(0)‖Z

1 + κ2

}
≥ κ0εmin

{
∆k,

ε

1 + κ2

}
≥ κ0ε∆k.

Combining these inequalities gives

|%∗k − 1| ≤
ξ∆k + 1

2 (κ1 + κ2)∆k

κ0ε

for sufficiently large k. Therefore, by Lemma A.2, %∗k → 1 as k →∞. By Lemma A.1,
%∗k + η ≥ %k ≥ %∗k − η and thus limk→∞ %k ∈ [1 − η, 1 + η]. Since η < 1 − η2, there
exists some k such that %k ≥ η2.

Now we are able to prove the convergence Theorem 4.4 for the classic trust-region
algorithm, Algorithm 4.1.

Proof. (of Theorem 4.4 for the classic trust-region algorithm) For contradiction,
suppose there exists ε > 0 such that ‖∇mk(0)‖Z ≥ ε. By Lemma A.2, limk→∞ ∆k =
0. However, by Lemma A.3, %k ≥ η2 for all k sufficiently large. Since %k ≥ η2 implies
∆k+1 ≥ ∆k, this contradicts limk→∞ ∆k = 0. Thus, lim infk→∞ ‖∇mk(0)‖Z = 0.

By the inexact gradient condition (4.3), lim infk→∞ ‖∇mk(0)‖Z = 0 implies
lim infk→∞ ‖∇f(zk)‖Z = 0.

To prove convergence of the retrospective trust-region algorithm, in addition to
achieving a successful step, i.e., %k ≥ η1, we must show that %̃k+1 ≥ η2.

Lemma A.4. Let Assumptions 4.3 hold. If there exists ε > 0 such that ‖∇mk(0)‖Z ≥
ε for k sufficiently large, then in the retrospective trust-region algorithm, Algorithm 4.1
with Remark 4.2, the conditions %k ≥ η1 and %̃k+1 ≥ η2 hold for all k sufficiently
large.
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Proof. Lemma A.3 proves %k ≥ η1 for all k sufficiently large. By Taylor’s theorem,
there exists t3 ∈ [0, 1] such that

mk+1(−sk)−mk+1(0) = −〈∇mk+1(0), sk〉Z +
1

2
〈∇2mk+1(t3sk)sk, sk〉Z .

This equality, the expansion of predk in the proof of Lemma A.3, and Assumptions 4.3
imply

|predk − (mk+1(−sk)−mk+1(0))| ≤ ‖∇mk+1(0)−∇mk(0)‖Z∆k + κ2∆2
k.

To bound this further, notice that

‖∇mk+1(0)−∇mk(0)‖Z ≤ ‖∇mk+1(0)−∇J(zk + sk)‖Z
+ ‖∇J(zk + sk)−∇J(zk)‖Z
+ ‖∇J(zk)−∇mk(0)‖Z . (A.1)

We bound the first and third quantities on the right-hand side of (A.1) using (4.10),
and the second quantity using the differentiability of J , namely,

‖∇J(zk + sk)−∇J(zk)‖Z =
∥∥∥∫ 1

0

∇2J(zk + tsk)skdt
∥∥∥
Z
≤ κ1∆k.

This proves that

|predk − (mk+1(−sk)−mk+1(0))| ≤ (ξ∆k + ξ∆k−1 + κ1∆k)∆k + κ2∆2
k,

which implies the bounds

predk − ε̃k∆k ≤ (mk+1(−sk)−mk+1(0)) ≤ predk + ε̃k∆k

with ε̃k = (ξ∆k + ξ∆k−1 +κ1∆k +κ2∆k). The fraction of Cauchy decrease condition
and the assumption that ‖∇mk(0)‖Z ≥ ε imply

(mk+1(−sk)−mk+1(0)) ≥ (κ0ε− ε̃k)∆k. (A.2)

Since ε̃k converges to zero by Lemma A.2, the right-hand side of (A.2) is positive for
sufficiently large k. These bounds and Lemmas A.1 and A.3 imply that, for sufficiently
large k,

%̃k+1 =

(
credk
predk

)(
predk

mk+1(−sk)−mk+1(0)

)
= %k

(
predk

mk+1(−sk)−mk+1(0)

)
≥ %k

(
1− ε̃k∆k

mk+1(−sk)−mk+1(0)

)
≥ %k

(
1− ε̃k

κ0ε− ε̃k

)
≥ %k −

(1 + η)ε̃k
κ0ε− ε̃k

.

Hence, for sufficiently large k, we have %̃k+1 ≥ η2, as desired.
The first-order convergence result for the retrospective trust-region algorithm, Al-

gorithm 4.1 with Remark 4.2, can now be proven by following the proof of Theorem 4.4
for the classic trust-region algorithm, replacing Lemma A.3 by Lemma A.4.


